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ABSTRACT

Noise and stability of current state of the art near-infrared (NIR) array detectors are still substantially worse
than optical science grade CCDs used in astronomy. Obtaining the maximum signal-to-noise ratio in flux image is
important for many NIR instruments, as is stable well understood data reduction and extraction. The Habitable-
zone Planet Finder (HPF) is a near-infrared ultra stable precision radial velocity (RV) spectrograph commissioned
on 10-m Hobby-Eberly Telescope (HET), McDonald Observatory, Texas, USA. HPF uses a Teledyne H2RG array
detector. In order to achieve the high-precision (∼ 1 m/s) RV measurements from the NIR spectrum of HPF’s
science target stars, it is vital to maximize the signal-to-noise ratio and to accurately propagate the uncertainties.
Here we present the algorithms we have developed to significantly improve the quality of flux images calculated
from the up-the-ramp readout mode of H2RG. The algorithms in the tool HxRGproc presented in this manuscript
are used for HPF’s bias noise removal, non-linearity correction, cosmic ray correction, slope/flux and variance
image calculation.
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1. INTRODUCTION

The Habitable-Zone Planet Finder (HPF) is a fiber-fed near-infrared (0.808 to 1.279 µm) ultra-stable high-
resolution precision radial velocity (RV) spectrograph recently commissioned on the 10-m Hobby-Eberly Tele-
scope (HET) at McDonald Observatory, Texas, USA.1–3 HPF uses a 1.7 µm cutoff Teledyne H2RG (Hawaii-2RG
HgCdTe 2048x2048) array as the detector. In order to achieve the 1 m/s RV precision goal, we have to detect
Doppler shift of 1/2000th of an 18 micron H2RG pixel∗. Such an RV precision measurement is currently an un-
charted regime for NIR detectors. Unlike optical CCDs, images from H2RG arrays have significant non-Gaussian
spatial and temporal noise. Raw read-out signals have to be corrected for bias fluctuations, non-linearity, per-
sistence, and other effects.

Further author information: E-mail: jpn23@psu.edu
∗This level of precision measurement is realized by effectively measuring shifts from all parts of the spectrum spanning

thousands of pixels simultaneously. Any systematic errors from the detector which does not average out will limit
achievable RV precision.
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In this manuscript we describe the reasoning behind the techniques, algorithms, and the software tool
(HxRGproc) we developed to clean and process H2RG up-the-ramp data. While the algorithms were developed
to meet the science goals of HPF spectrograph, they are directly applicable to any HxRG based astronomical
instrument. In the subsequent sections we summarize various sub-modules and algorithms of our H2RG data
processing module which are used to generate the clean 2D flux images that the spectral extraction algorithms
use to extract 1-D spectra.

2. HPF’S H2RG READOUT MODE

The NIR array’s readout voltage stability as well as thermal stability are crucial to avoid introducing any
systematic artifacts in the RV measurement with HPF. Our thermal control load measurements showed clear
transients as we switch between various readout modes of the H2RG (i.e. from 4 to 32 channel, or different reset
modes). Hence, during science operation we consistently operate the detector in pixel level reset - 4 channel
readout mode. In this mode the detector is continuously reset at 10.45 seconds cycle while idle. Once an exposure
is triggered, it will readout the whole array in 4 vertical parallel channels at the same cadence of 10.45 seconds.
The non-destructive readout is continued till the end of the exposure, after which the reset cycles restart. For
more details on the readout pattern and detector pixels see 4,5. We do not perform any grouping of readouts in
our up-the-ramp. The first non-destructive readout immediately after the reset loop is stopped is called Pedestal
frame†. Ground based observations through variable weather, guiding errors and the large variability in flux
across a single track of the HET (due to the unique design of the telescope) all break assumptions of constant
flux. In the rest of the manuscript we describe how this complex and variable time series up-the-ramp 3D data
with bias variations, non-linearity, and other artifacts is processed to obtain a single clean 2D flux (slope) image.

3. BIAS FLUCTUATION

The biggest source of non-Gaussian errors in an H2RG based system is the bias fluctuation during the array
readout. This is an additive signal, which gets added on top of the pixel readout down the signal chain before
digitization in the SIDECAR ASIC (which we use for HPF). This additive nature is verified by taking saturated
up-the-ramp data, and measuring the signal fluctuations on top of the steady saturated pixel count signal. This
signal is highly correlated and has a 1/f noise spectrum.6 Figure 1 shows a typical example of bias fluctuation
we measured in our detector system. H2RG detectors have four rows or columns of reference pixels all around
the edges, which are not light sensitive, for measuring these bias signals to correct them.

We subtract this bias fluctuation before applying any other detector corrections such as non-linearity. Bias
fluctuation of variance σ2

bias is an additional noise term in the flux/slope image calculation of the up-the-ramp
data. For a single pixel this noise term behaves exactly like readout noise (σ2

ron) or bit quantization error.
However, the crucial difference between this bias noise term and others is that it is correlated across pixels in
the array. Reducing this error term to less than the per pixel readout noise typically suffices for many imaging
applications. However, precision RVs are calculated from the entire spectrum spread over many pixels, and it is
sensitive to any systematic noise structure in the image which does not average down like readout noise across
pixels. Hence, it is quite important to reduce these highly spatially correlated bias noise to a significantly smaller
level than the averaged out readout noise.

Equation 1 is the variance formula for the slope estimate. This formula is obtained by updating the formula
derived by Robberto M. 2010‡, with the σ2

bias term.
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†This frame is not a zero integration time frame. Since we are doing pixel level reset, the exposure time is same as a
single frame readout time.
‡JWST-STScI-002161,https://jwst.stsci.edu/files/live/sites/jwst/files/home/instrumentation/

technical%20documents/JWST-STScI-002161.pdf
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Figure 1. Plot showing the time series fluctuation in the bias value during the read out of H2RG detector. X axis is
an arbitrary range of row readout numbers representing time of the readout. Each curve is a row average of separate
readout channels (readout noise gets averaged out revealing the underlying bias fluctuations). The Pedestal difference of
each channel is subtracted out from this plot for clarity. The sudden change in bias levels across different channels at the
end of a frame readout is marked. V Ref curve with significantly more noise is the average of 4 column vertical reference
pixels at the edge of Channel 1.

where σ2
b is the variance of the slope estimated from the up-the-ramp data (in units of (e−/sec)2), n is the

number of non-destructive readouts, b is the true flux slope, tf is the one full frame readout time, σ2
ron is the

readout-noise variance, σ2
bias is the bias variance (this is correlated across pixels), and g is the e− to ADU gain.

3.1 Basic Bias Subtraction

During the raster scan readout of each channel of the detector, we get an independent measurement of the bias
in each channel while a reference pixel is read out. In the traditional readout mode at which we are operating
HPF, we have reference pixels at the first and the last four rows of each channel readout for pinning down the
bias differences between the four channels. We also have the first and the last four columns of the first and the
last channels as reference pixels. These sample the bias values as each row is read out§. The bias signal measured
from these reference pixels are conventionally filtered and subtracted to remove the bias fluctuations.8,9 In this
subsection we describe our optimized version of the conventional bias subtraction procedure using the reference
pixels.

As shown in Figure 1, there is a significant jump in the bias values of each channel at the end of a frame
readout. This sudden offset is slowly varying during the read out of a channel, and the linear component of this
variation is subtracted out by a linear interpolation of the bias values at the top and bottom four rows of reference
pixels. Since odd and even column pixels have different bias variations (alternative column noise (ACN)), this
calculation is done for odd and even columns of the channel separately. In our four channel readout mode, we
have a total of 1024 reference pixels for estimation of this linear component. The variance of the most efficient
estimate of average due to readout noise is (σron/32)2. Usage of median for robustness will further increase the
variance by a factor of π/2. Hence, we used a significantly more efficient estimator than median, and at the
same time more robust estimator than the mean, viz. “biweight location” to estimate the mean bias value from
the reference pixels.10

Figure 2 shows the partition of a single non-destructive readout frame for bias correction. While using robust
order statistic based estimators like median and biweight location, it is important to remove any systematic
offsets between the pixel values (else the variance of the estimate will be as high as σ2

ron). H2RG detectors have

§The IRS2 readout mode proposed by 7 does interleaved reference pixel reads, thereby obtaining a more simultaneous
and accurate bias measurement. However, currently, we do not operate in that readout mode since standard SAM +
SIDECAR control hardware does not support IRS2 readout. The IRS2 is a significant deviation from the single pixel
reset cycles which happen before exposure starts. The thermal stability implications of this for RV measurements need
to be studied more.
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Figure 2. Partitioning diagram of a non-destructive readout frame along the readout channels for estimating the bias
from the reference pixels (marked in pink). The reference bias calculation is done separately for odd and even columns of
each channel as shown in the diagram. The intensity map shows the bias variations across the channels as well as inside
a channel manifesting in horizontal bands.

significant pedestal noise which raises each pixel to a different base level. In order to remove these offsets, we
subtract the first Pedestal non-destructive readout frame from all subsequent frames. This process will increase
the effective σron to

√
2σron for reference pixels. However, it does not directly increase the effective readout noise

for the final slope image, since it only affects the y intercept of the slope line fit¶. This step does not reduce the
channel bias fluctuation variance to (

√
2σron/32)2 level, due to the inability of the linear interpolation to remove

the higher order fluctuations during a readout. It is compounded by the fact that the four rows of the reference
pixels only sample an instance of the short period fluctuations shown in Figure 1. This would have been a more
significant issue, if 32 channel readout mode of H2RG was used instead of the 4 channel mode.

The next step is the subtraction of the higher frequency fluctuations common to all the four channels (these
are the horizontal banding seen in Figure 2). We have independent measurement of this variation from the four
reference pixel columns on both sides. If we use mean estimator to average 8 pixels of each row, our estimate will
be readout noise limited at

√
2σron/

√
8 level. This will result in a significant high frequency horizontal banding

in the final slope image. To reduce introduction of this readout noise artifact, we need to smooth the vertical
reference pixel measurement. However, this will be at the cost of inability to correct high frequency components
of the bias fluctuations. Figure 3 shows the effective noise in the data for a range of window sizes parameter
of 2 degree Savitzky-Golay filter. We found that a vertical filter window size of 15 rows was optimal for HPF’s
H2RG detector.
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Figure 3. Optimization of a Savitzky-Golay filter with 2 degree polynomial and variable window size for optimal
compromise between removal of high frequency vertical bias fluctuations and readout noise artifact after subtraction.

¶We will later estimate the lost flux in pedestal subtraction for including in the non-linearity correction calculation.
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3.2 Advanced Bias Subtraction

Using just the reference pixels as we described in the previous section will enable reduction of effective σbias to
less than a small fraction of σron per pixel. However, since σbias does not average down like σron when using
flux from nearby pixels, we will soon get limited by the effective σbias noise. For example, the green curve in
Figure 4 shows the jumps at channel boundaries due to residual σbias, they are visible in the plot after averaging
out readout noise by averaging along the vertical columns. If left uncorrected even these residual fluctuations
can impact the precision of the measured radial velocity. HPF’s spectral format results in a significant fraction
of pixels between echelle orders which are only illuminated by the smooth scattered light. This enables us to
exploit the correlated signal information across these pixels to better constrain the bias fluctuations to higher
accuracy than what is possible with reference pixels alone.

3.2.1 Median Residue Correction Method

This method is to improve correction for the vertical fluctuations across read out channels. Fundamentally, this
method uses the following two assumptions for the low percentile count pixels (mostly inter echelle order pixels)
in a channel.
1) Since the flux is smoothly varying across pixels, the mean flux of odd column pixels is the same as mean flux
of the even column pixels in a channel during an exposure.
2) The counts in the low flux pixels should linearly increase with time during an up-the-ramp exposure.
A robust estimate of the median pixel count value based on only the low percentile flux pixels is calculated
for top and bottom halves of each channel. This average estimate of about 2.6 × 105 pixels has readout noise
contribution averaged down to ∼ σron/500. A linear slope is fitted to this sequence of up-the-ramp median values
to obtain deviations from a straight line. These deviations are mostly the σbias noise which did not average out
across the pixels. This residue is taken as the second order bias correction and applied on to the data. Since
this method uses the median of the pixels across the channel instead of four reference rows, it also provides a
better averaging over the high frequency horizontal banding noise. The red curve in Figure 4 shows the result
for comparison after application of this method, which is particularly well suited to the echelle high resolution
spectroscopy format.
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Figure 4. Vertical column averaged signal before (green) and after (red) our median residue correction method is shown.
Green curve shows significant jump in counts across four channels, as well as higher noise. The channel offset in green
curve is significantly higher than the readout noise limited bias estimate error. Analysis of vertical columns shows that
this offset in average is driven by the high frequency fluctuations in the channel bias which are not removed in a simple
linear interpolation model. Usage of pixels across the channel in our median residue correction method improves this to
a significant extent. The overall high frequency noise across odd and even columns inside each channel is also improved.

3.2.2 Vertical High Frequency Bias Correction

More than the channel bias fluctuations we dealt in previous subsection, the vertical high frequency bias fluctu-
ations are limited by the small number statistics of the reference pixels. The blue and orange curves in Figure
5 show row averaged (to average out readout-noise) plot of a section of two separate channels. The correlated
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Figure 5. Channel averaged signals before and after our iterative correction is shown. Before the correction one can
see a significant correlated noise in two independent channels. The corrected data (red and green) have no significant
correlation.

high frequency σbias is visible in both channels even after the basic reference pixel subtraction. This structure
is the cause of the residual faint horizontal banding noise. Since HPF’s echelle orders are along the horizontal
pixels, we cannot use the previous technique to estimate this signal. Instead, we calculate it iteratively. The first
generated slope image is used as a template to subtract the smooth scattered flux in inter echelle order pixels
of the up-the-ramp frame. The rows are then weighted averaged to obtain the vertical bias correction values.
This is then applied to the frames before the next iteration of slope image calculation. Typically one iteration
is enough. The green and red curves in Figure 5 show the non-correlated channel after the application of this
iterative technique. Robustness of this method under different flux conditions is still under study, and we have
not yet enabled this correction by default to all data in HPF pipeline.

Any remaining bias fluctuation induced slope changes gets further removed significantly during sky subtrac-
tion due to the associative property of the slope calculation formula. We discuss more on this property in Section
7.

4. NON-LINEARITY CORRECTION

After bias correction, the next major correction to the up-the-ramp data is the classical non-linearity correction.
Unlike CCDs, the H2RG pixels have different non-linearity response across pixels. The non-linearity correction
curves have to be calibrated at a pixel by pixel level. The conventional method of fitting an interpolation function
to transform the measured counts to the linear extrapolation of the flux estimate from the low (∼5%) well depth
counts8,11 is susceptible to many systematic biases for the following reasons.
1) A significant fraction of pixels have varying levels of non-linearities even at small fractions of the well depth.
This will result in systematically under estimating the non-linearity.
2) The first few readouts of the up-the-ramp data is usually affected by the persistence from previous saturation
while taking calibration data.
3) A simple lower order polynomial fit typically cannot fit the bottom linear part and highly non-linear top part
of the curve simultaneously.
4) This approach is sensitive to model uncertainties and systematic biases introduced due to the choice of thresh-
old which defines the linear range inside the well depth.

Since we know the non-linearity curve is a monotonically decreasing function, a more constrained fit can be
made by fitting the change in count versus time (Figure 6). If c is the measured count at time t for a constant
flux source Fo, the change in the counts as a function of time is given by the differential equation dc

dt = Foε(c).
We can model ε(c) with a monotonically decreasing polynomial with slope constrained to be zero at c = 0. The

fitted function can then be integrated
∫ T
0
Fodt =

∫ C
0

dc
ε(c) to obtain the non-linearity correction function NLC(C)

which maps measured counts C to the true count FoT . Since the divergence of a Taylor series approximation
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Figure 6. Change in the measured count rate as a function of measured counts during an exposure of a constant flux
source. This monotonically decreasing function is modeled as ε(c) in our models. For our Inv B-spline model, inverse of
this curve 1/ε(c) is modeled using B-splines.

is proportional to the order and distance to the nearest pole, it can be improved by dividing the polynomial
by another polynomial which has similar order pole at the same location. This makes the Padè approximation
polynomials better for fitting this curve ε(c) which has a pole where c equal to the saturation value of pixel.
However, the degree of the polynomial in denominator of Padè approximation could not be made more than 2
to keep the dc

ε(c) analytically integrable. The major motivation for analytical polynomial models for non-linearity

curve is to avoid the computational bottleneck of any computationally intensive method for applying corrections
on ∼ 4 million pixels of H2RG. Since integration of B-splines are computationally fast, we also modeled the
inverse of Figure 6 (i.e. 1

ε(c) ) with B-splines. Figure 7 shows the comparison of various best fitted non-linearity

correction models. Inv B-splines model was found to be most robust across 4 million pixels. The only draw back
of this model is the I/O bottleneck the large coefficient array creates when it is required to be saved or loaded.
However, once loaded the computation is fast.
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Figure 7. First panel shows the comparison of various non-linearity correction models we developed. The 5%, 10% and
20% fit lines are the linear extrapolation of corresponding well depths. Biesiadzinski+ model is the model proposed by
12, Padè model and Inv Bspline model are described in the text. On the right side is the residue of a stright line fit to
the linearity corrected data by the three models. The reduced χ2

ν estimate showing the goodness of the straight line fit is
shown in the legends.

For fitting the non-linearity correction curves we took multiple saturating up-the-ramp data of constant
illumination source. The persistence of the detector contaminated the initial reads of the long up-the-ramp data.
To prevent this part of the curve from affecting our non-linearity correction curve, we extrapolated the low flux
data points using a constrained ax2 + b polynomial.
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When we subtract the first Pedestal readout we are subtracting arbitrary counts from each pixel. We need to
add the real photon counts back into the up-the-ramp data before applying non-linearity correction. The slope
image without non-linearity correction is first generated to estimate the flux in the Pedestal frame. It is then
added to the up-the-ramp data before applying the non-linearity correction.

Our measurements of reciprocity failure in HPF’s H2RG detector did not show any significant effects of
reciprocity failure to correct.

5. DYNAMIC THRESHOLDING

The step after non-linearity correction is thresholding of the up-the-ramp data to contain only the reliable linear
part of the corrected up-the-ramp curves on a pixel by pixel basis. The up-the-ramp readout mode provides us
power to dynamically threshold at pixel by pixel level depending on the epoch of individual pixel’s saturation.
However, even though it is desirable for certain optimal signal applications, for precision RV, it is important to
have same epoch of observation across the whole order of the spectrum. We constrain the saturation thresholding
of pixels of same echelle order together with a user defined echelle order mask.

6. COSMIC RAY HIT RECOVERY

Figure 8 shows Cosmic-Ray hits, Reset anomalies and other artifacts typically seen in an H2RG array readout.
Up-the-ramp data enables us to detect CR hits by detecting these signals and recover the signal from unaffected
parts of the ramp data. We designed a filter system using a median smooth filter + [1,-3,3,-1] digital abrupt
change detection filter to detect CR hits as well as reset anomaly pixels. The slopes are calculated from the
clean parts of the affected ramp and combined by variance weighted average.

Figure 8. Sample collection of various artifacts typically seen in some pixels in an up-the-ramp data. The Cosmic Ray
pixels and initial readout anomaly pixels are recoverable by identifying the exact frames of the events in the up-the-ramp
data.

7. FLUX/SLOPE IMAGE CALCULATION

The final slope of up-the-ramp data of each pixel is calculated by the analytical least square linear regression
formula

b =
nSxy − SxSy
nSxx − S2

x

, (2)

where b is the slope, n is the number of readouts, Sxy = Σxiyi, Sx = Σxi, Sy = Σyi, Sxx = Σxixi, where x is
the time vector and y is the counts vector.
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The realistic on-sky up-the-ramp data from a star through telescope is never a straight line. Passing clouds,
telescope tracking error, jitter, HET’s pupil size change, etc., results in a complicated time varying up-the-ramp
curve. Usage of this direct analytical formula for slope calculation instead a general least square minimization
procedure was chosen for the following robustness properties‖.

7.1 Robustness of Slope image

7.1.1 Relative flux preservation against throughput changes

To model time variable flux due to clouds, telescope tracking error, HET pupil size changes, etc., in the Equation
2, yi can be modeled as yi =

∑j=i
j=0 cjyT = yT

∑j=i
j=0 cj , where yT is the true flux, and cj is the time varying

throughput fraction. Perfect linear data is the special case of cj = 1. Any achromatic throughput changes in the

system are represented by these coefficients Ci =
∑j=i
j=0 cj , enabling us to write yi = yTCi.

Consider any two wavelengths (w1 & w2) in the spectrum which has relative flux difference α, i.e. yTw1
=

αyTw2 . Substituting into the equation above, we obtain Sxyw1 = αSxyw2 and Syw1 = αSyw2 ., and therefore
bw1 = αbw2. Thus Equation 2 preserves relative flux irrespective of the achromatic∗∗ throughput changes, cj .

7.1.2 Associative property of background variations

Errors due to telescope tracking or passing clouds changes the sky background differently from the star flux.
Detector bias fluctuations also behave same way. In order to subtract these effects by sky fiber subtraction, the
associative property of this fluctuation induced slope changes has to be guaranteed. Using the same formalism as
in previous section, Let Bi be the cumulative background variation till the ith readout. Like earlier, we can write
yi = yTCi+Bi. Then, Sy = Σyi = ΣyTCi+ΣBi = SyT +SB , and Sxy = Σxiyi = ΣxiyTCi+ΣxiBi = SxyT +SxB .
Substituting them into Equation 2, we obtain the slope due to background fluctuation is addictive over the slope
of the star flux. i.e. b = bT + bB . Hence, subtraction of sky fiber which samples the same background can be
done on slope images to remove any independently varying background sources like sky or detector bias.

We also verified the robustness of slope images against the above mentioned scenarios by running a Monte-
Carlo simulation.

7.2 Variance image and Flux weighted exposure time

For correct error propagation, a per pixel variance image is also calculated along with the slope/flux image using
Equation 1 with σbias = 0. This variance map is propagated down the HPF pipeline till final RV estimation.

For accurate barycentric velocity correction to obtain the most precision RV, the calculation of the flux
weighted midpoint of the observation is important. Up-the-ramp readout of H2RG detector contains information
on how the flux varied over an exposure at the cadence of a single frame readout. The cumulative star flux per
each order after background and sky subtraction in up-the-ramp data is calculated to obtain the flux weighted
exposure time, enabling per-order barycentric correction if needed.

8. SOFTWARE TOOL

All of the H2RG data processing algorithms are written as pip installable Python package HxRGproc with support
for both Python 2.7 and 3.6+.

To enable maximum modularity and re-usability of the algorithms, HxRGproc module is written in functional
style. Objects of object oriented programming are used only for data structures or for passing configuration
settings. All the main functions are self reliant, and reusable individually. Addition of new features or instrument
typically involves adding new functions and passing them as arguments to the existing functions.

‖Another important advantage of this simple analytical formula is that it is computationally inexpensive to calculate
and it is easily vectorisable.
∗∗Chromatic throughput changes will not preserve relative flux, this is an issue even for normal correlated double

sample images or for CCD images.
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To optimally utilize modern multi-core CPUs and clusters. HxRGproc uses multiprocessing module of python
to parallelize many of the embarrassingly parallel procedures while processing multiple sets of data. Expensive
Python loops are avoided and calculations are all done by vectorized algorithms.

It also generates a standardized and comprehensive trace back logs even while running in parallel mode.

The package has built-in unit tests which cover crucial parts of the code. We are working on increasing the
test coverage.

HxRGproc also includes submodule for simulation of H2RG up-the-ramp data for arbitrary flux images and
telescope tracking errors and jitters. It uses noise generator developed by 6 for simulating H2RG detector noise.

The package also includes many handy utility submodules to generate quality reports and other logs.

9. CONCLUSION AND ONGOING WORK

We have presented an end-to-end comprehensive procedure and software to convert up-the-ramp H2RG data
to slope/flux images. This is the first step of processing of H2RG data in our HPF pipeline. Our improved
algorithms significantly reduces the bias fluctuation induced non-Gaussian errors in the final flux image.

While these algorithms have already enabled us to demonstrate HPF’s radial velocity precision requirements,
we are developing more higher order bias correction techniques to improve this further. Two other crucial
correction models we are developing is for persistence correction of images with non zero flux, and sub-pixel
flat model to correct for sub-pixel sensitivity differences along the hatch patterns on the detector. Our intent
is to continually improve these algorithms building on modern statistical techniques and modern computing
capability.
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