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ABSTRACT 
 
The software development for an upgrade to the Hobby-Eberly Telescope (HET) was done in LabVIEW.  In order to 
improve the performance of the HET at the McDonald Observatory, a closed-loop system had to be implemented to keep 
the mirror segments aligned during periods of observation.  The control system, called the Segment Alignment 
Maintenance System (SAMS), utilized inductive sensors to measure the relative motions of the mirror segments.  
Software was developed in LabVIEW to tie the sensors, operator interface, and mirror-control motors together.  
Developing the software in LabVIEW allowed the system to be flexible, understandable, and able to be modified by the 
end users.  Since LabVIEW is built using block diagrams, the software naturally followed the designed control system’s 
block and flow diagrams, and individual software blocks could be easily verified.  LabVIEW’s many built-in display 
routines allowed easy visualization of diagnostic and health-monitoring data during testing.  Also, since LabVIEW is a 
multi-platform software package, different programmers could develop the code remotely on various types of machines.  
LabVIEW’s ease of use facilitated rapid prototyping and field-testing.  There were some unanticipated difficulties in the 
software development, but the use of LabVIEW as the software “language” for the development of SAMS contributed to 
the overall success of the project. 
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INTRODUCTION 
 
The Hobby-Eberly Telescope (HET) is a 9.2-m fixed elevation telescope with a segmented primary mirror.  It is located 
at McDonald Observatory in West Texas at an elevation of 2,008m. Descriptions of the telescope and its operation may 
be found at the indicated references1,2.  During initial testing of the telescope after first light, composite star image spots 
formed by individual mirror segments were observed to “de-stack”, or move with respect to each other, over a period of 
time after the segments had been “stacked”, or aligned with each other.  While minor segment motion over a period of an 
hour or more had been anticipated in the original design, misalignment of the segments on a time scale of tens of 
minutes under some conditions was unexpected. 
  
In November 1999, the University of Texas at Austin entered into a Space Act Agreement with NASA’s Marshall Space 
Flight Center (MSFC) to procure a Segment Alignment Maintenance System (SAMS) for the HET3,4. The objective of 
the SAMS is to correct the effects of the de-stacking phenomenon, maintaining primary mirror segment alignment. 
MSFC teamed with Blue Line Engineering of Colorado Springs, Colorado.  Blue Line provided the edge sensing system 
and electronics.  MSFC developed control algorithms and control system software.  MSFC also managed system 
integration and verification testing.  
 
The SAMS consists of inductive edge sensors, sensor electronics, and a central control computer hosting a suite of 
software applications.  Details concerning SAMS hardware, architecture and control system design are reported 
elsewhere in the literature3,4.  The main function of the SAMS software is to acquire edge sensor measurements from the 
edge sensor electronics, utilize optimal control algorithms to compute tip, tilt and piston correction commands, and 
communicate the tip, tilt and piston commands to HET’s Primary Mirror Computer (PMC).  The SAMS software has 
ancillary functions of monitoring edge sensor health, reporting and correcting errors, archiving engineering data and 
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supporting calibration and troubleshooting.  This paper describes the software applications developed for the SAMS 
central control computer.  The first section will describe the justification for the technical approach chosen to develop 
the software.  The second section will describe the design and implementation of the software that was developed. 
 

1. JUSTIFICATION FOR TECHNICAL APPROACH 
 
The technical approach employed in developing the SAMS software was driven by HET’s requirements.  Among the 
drivers for software development was low-bandwidth operation.  The dynamic environment of HET had a bandwidth 
sufficiently low that a high-speed system was not required.  Another driver was ease of use.  The software had to be easy 
to use with minimal interaction on the part of the telescope operator (TO), because the HET TO has many subsystems to 
operate and maintain each night.  Reliability was important because observing time is precious and nobody wanted to 
waste observing time on recovering from software faults.  Maintainability of the software was essential so that HET staff 
could easily follow the code and modify it to accommodate facility upgrades and system improvements.  A final and 
very important driver was the requirement for rapid prototyping.  The SAMS project was on a very ambitious schedule 
which required most functional software to be operational and verified in order to support the seven-segment Sub Array 
Test (SAT).  The SAT was scheduled only 36 weeks after the start of the program.  So it was essential that the 
development environment supported rapid development and verification. 
 
1.1 Low-bandwidth operation 
 
The SAMS systems requirements placed no challenging real-time requirements on the SAMS software itself.  The only 
requirement driving system bandwidth was that the HET’s Primary Mirror Computer required mirror command updates 
from SAMS once every 10 seconds.  That requirement flowed down to accessing the edge sensor electronics for edge 
sensor measurements once per second.  The relatively low bandwidth of the data being processed (1Hz) and the 
computation of the required data to be used (~0.1 Hz) by the PMC allowed flexibility in the choice of the development 
software and the design of the necessary applications.  The applications needed to be multi-threaded to accommodate the 
multiple tasks the software would be required to perform.  The software did not require any unique process-scheduling 
code or real-time code to insure the successful operation of the SAMS control system. 
 
1.2 Ease of Use 
 
Creating a set of easy to use and functional applications was one of the main goals of the SAMS software developers.  
To accomplish this, the applications were designed to be graphical-based and would require a minimal amount of 
telescope operator interaction.  The SAMS software needed to provide the telescope operator an intuitive graphical user 
interface.  This required the interface to provide the ability to point and click through the setup and operation of the 
SAMS software.  Each mode of the software’s operation required a graphical interface with command buttons containing 
descriptive labels.  This approach eliminated the need to remember or look up text-based commands to use the SAMS 
software.  Once operating, the software needed to provide the operator the ability to determine the overall health of the 
SAMS system but not require the operator to continuously adjust any aspect of the software in order to maintain the 
SAMS system performance.  The SAMS software was designed in such a way that the telescope operator could provide 
the SAMS software an initial stacked mirror configuration and place the SAMS software into the operating mode.  The 
software would then operate without any further interactions until a new mirror stack was required. 
 
1.3 Reliability 
 
In designing the SAMS system it was extremely important that its operation be reliable during nightime observations.  
To achieve the reliability needed, the system and software were designed around established and well-supported 
commercial off-the-shelf (COTS) hardware and software components.  The COTS products that were used in the design 
and development of the SAMS system and software were the SUN/Solaris computer configuration, 100Base-T Ethernet 
communication medium, Transmission Control Protocol/ Internet Protocol communication protocol (TCP/IP) utilizing 
the Berkley socket abstraction, and National Instruments LabVIEW software development package.   
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The SUN/Solaris host configuration was chosen, in part, because it was one of the acceptable platforms identified in the 
SAMS specification.  This configuration also supported the communication medium requirements contained in the 
SAMS system requirements.  The SUN/Solaris configuration provided a proven and reliable hardware platform and 
operating system combination.  The maturity of, and support available for, this configuration provided confidence in the 
design and development of the software and operation of the final system. 
 
The SAMS specification required that the SAMS software communicate over either 10Base-T or 100Base-T Ethernet.  
The HET facility utilizes the 10/100Base-T Ethernet for its network communications.  The 100Base-T Ethernet, or Fast 
Ethernet, network communication medium has been in widespread use since the late 1990’s5.  This communication 
medium provides a fast and reliable communication link for network traffic.  The SUN/Solaris host computer provided 
the hardware connection and software support for a 100Base-T network interface.  The software design relied on the 
100Base-T interface for all communications.        
 
The specification required that the SAMS software communicate using the TCP/IP protocol utilizing the Berkley socket 
abstraction.  This TCP/IP communication protocol has been in service since 1977.  The Berkley socket abstraction has 
been a part of the TCP/IP protocol since 19826. The use of TCP/IP socket communications provided a standard, reliable 
communication mechanism on which to build the software interfaces needed to create a reliable set of applications.  
 
While there were several software development environments available for the SUN/Solaris platform, the SAMS 
software design team chose National Instruments’ LabVIEW software development package.  The LabVIEW package 
was chosen because of its ease of use, strong graphical resources, and network support.  LabVIEW offers an intuitive 
graphical programming language in which to develop the flow of a software application.  The language does not require 
knowledge of obscure text-based function calls.  Programming is accomplished using graphical programming objects.  
These objects are made available to a developer on a palette containing all valid programming resources.  The function 
of each object is graphically depicted with a textual description also available.   The LabVIEW development 
environment also provides the developer with a suite of graphical objects that can be used to build a user interface.  
These graphical controls and indicators are customizable and provide a rapid visualization capability.  LabVIEW 
provides programming objects that support the TCP/IP socket network communications.      
 
The SAMS software development team had to insure that no catastrophic or spurious mirror corrections could be sent 
from the SAMS system to the PMC.  Extremely large mirror commands implemented by the PMC would, at the very 
least, send segments to the actuator limits, requiring extensive time for recovery.  At worst, spurious commands could 
damage the mirror segments.  Damaging a segment would cost the observatory money and result in lost observation 
time.  The software design incorporated checks to insure that sensors providing erroneous data be detected and that the 
subsequent mirror correction commands not be used by the PMC.    
 
1.4 Maintainability 
 
The SAMS software applications needed to be maintainable.  This maintainability re quired that the software applications 
be expandable, provide adequate troubleshooting resources, and be readable by personnel from other engineering 
disciplines.  These capabilities needed to be available during development and operation.   
 
During development the software design allowed for new programming objects to be developed and inserted in the 
program path where needed.  This design allowed the software to be expanded with minimal impact.  The LabVIEW 
development language itself provided many troubleshooting resources during development.  Some of the resources 
provided by LabVIEW were the ability to set breakpoints, monitor variables, compute resources used, and observe 
program execution. 
 
During operation the design allowed for multiple legal configurations of the HET mirror array and the SAMS electronic 
sensors.  The SAMS software was designed to provide the user access to, and control of, the SAMS resources while in 
operation.  The software design provided the user the ability to monitor and control the HET mirror array configuration, 
all SAMS sensors, and the resulting corrections being computed.  This capability was intended to provide the user the 
ability to troubleshoot all aspects of the SAMS system during operation. 
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To illustrate the impact LabVIEW’s readability has on the software’s maintainability refer to Figures 1 and 2.  Figure 1 
is a depiction of the control flow developed by the SAMS control engineer.  LabVIEW’s graphical programming 
language provides the ability to implement control diagrams and present them in a way that is understandable by those 
unfamiliar with conventional text-based programming languages.   Figure 2 contains the LabVIEW implementation of 
the control flow diagram.  The LabVIEW code clearly captures the original control flow diagram’s correlation between 
the control variables and the summing junctions.  During the development and the early phases of initial operation for 
the SAMS software this feature of LabVIEW contributed to the success of the SAMS development.  This feature enabled 
the software developers to quickly answer and explain questions concerning control algorithm implementation in 
LabVIEW.   This readability feature will also benefit those who were not  members of the original development team.  
This feature will allow those who may have to maintain the software in the future to better “see” and understand the flow 
of the software. 
  

 
 

Figure 1: Control System Flow Diagram 
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The development schedule of the SAMS system required that a functional version of the software be available to support 
Sub-array test (SAT) before the critical design review was held.  The program schedule mandated a preliminary design 
review (PDR) 24 weeks into the program, the SAT 36 weeks into the program, and a critical design review (CDR) 40 
weeks into the program.  At a typical CDR, 80% of software design has been completed, not necessarily developed and 
verified.  The SAT was a seven-segment demonstration of the SAMS system.  SAT required functional software to 
demonstrate control system operation.  The same functional software would be extended to the full 91-segment array, 
except that, for the SAT, the size of the control matrices would be much smaller.  The position of the SAT in the critical 
path of the project necessitated that 80% of all functional software be developed and verified prior to CDR.  This 
required the software development team to rapidly develop a prototype version of the SAMS software applications.  The 
resources available within LabVIEW allowed the software developers to efficiently develop the network 
communications and graphical visualization necessary to successfully support this pre-CDR test.   
 
 

2. SOFTWARE IMPLEMENTATION 
 
The SAMS software was developed on a SUN/Solaris platform using National Instruments’ LabVIEW software 
development tool.  The SAMS software consists of two applications, the SAMSServer and the SAMSGui.  Figure 3 
illustrates the relationship of the two SAMS software components and other systems within the Hobby-Eberly 
Telescope’s Local Area Network (LAN).  All data into and out of the SAMS software is transferred using socket port 
connections over a 100Base-T LAN and conform to the TCP/IP (IP version 4) protocol and the Berkeley Socket 
abstraction.  The SAMSServer application acts as the data server within the SAMS system.  The SAMSServer collects 
and processes data from the SAMS Stackable System Processor (SSP) and provides this data to client applications.  
Other SAMS clients, including the SAMSGui application and the HET’s PMC, can request data from the SAMSServer 
application. 

Figure 2: Control Loop Implementation in LabVIEW 
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2.1 SAMSGui Application and Mode Transition 
 
The SAMS software operates within four distinct operating modes: Standby, Operate, Calibrate, and Diagnostic.  The 
SAMS operating mode is managed by the SAMSServer application and controlled by the SAMSGui application.  The 
SAMSGui can request the SAMSServer to transition from one mode to another.  If appropriate, the SAMSServer will 
transition to the mode requested.  The operating modes and their transition paths are depicted in Figure 4.  A description 
of each mode follows. 
 
The SAMS applications initially start in Standby mode.  Standby mode is an executive mode which governs transitions 
to all other modes and also serves as a parking mode from which the SAMS system can be reconfigured.  From Standby 
mode the application can transition to any of the three remaining modes of operation as shown in Figure 4. Standby 
mode provides the ability to modify and control the SAMS configuration.  From Standby mode the operator can remove 
or install sensors, segments, or degrees of freedom for a segment.  From Standby mode the operator can also set the 
current mirror configuration as the reference to be used by SAMS.  During  the transition to Operate mode, the SAMS 
software computes all the control system matrices based on the segment, sensor, and degrees of freedom configuration 
specified in Standby mode.   
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Figure 3: SAMS Software interfaces to SAMS and HET subsystems 
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In Operate mode, the SAMSServer acquires edge sensor measurements from the electronics stack over the SAMS 
electronics server port.  Figure 1 illustrates data flow within Operate mode.  Edge sensor measurements are sampled 
approximately once per second.  The sensor data are  time-tagged and archived on the system’s hard disk.  The Operate 
mode software then applies scale factors to the data, strips out missing sensors, identifies faulty sensors, and filters the 
remaining data.  Next, a control error signal is computed by combining the current sensor readings with reference values 
that are either user-specified or obtained from the global radius of curvature (GRoC) compensation loops8,9.  The control 
error signal is operated on by a series of matrix operations  which produce mirror segment motion commands in the 
prescribed units in the correct reference system.  The mirror commands are written to a file and updated every 17 
seconds.  It is during Operate mode that the PMC acquires current commands to maintain the HET’s mirror array 
alignment.   
 
Calibrate mode provides the ability to perform Influence Matrix and Edge Sensor calibrations, set calibration 
coefficients in the SAMS electronics, and command the SAMS electronics to save previously set calibration coefficients 
to non-volitile memory.   Calibration tests are performed by sending actuator move commands to the PMC via the client 
port.  Sensor data acquired during the calibration tests are time-tagged and archived on the SUN workstation’s hard disk.  
Software external to the SAMS software post-processes the data to derive the edge sensor scale factors and empirically-
determined influence matrix. Downloading coefficients to the SAMS electronics and saving coefficients to the 
electronics’ non-volatile memory is accomplished through the SAMS electronics server port. 
 
Diagnostic mode provides access to all SAMS sensor data and its intended use is for debugging SAMS sensor 
anomalies.   Diagnostic mode allows users to get a quick look at current data values in real-time.  Data available for 
viewing under Diagnostic mode include edge sensor measurements, local sensor temperatures,  and segment electronics 
temperatures. 
 
Within the SAMS software, the SAMSGui application provides the SAMS operator a graphical interface with which to 
control and monitor the operation of the SAMS system.  SAMSGui provides a graphical interface for each mode of the 
SAMS system.  Each of these mode-specific graphical interfaces contains clearly labeled buttons that can be selected by 
the operator.  These buttons correspond to the commands defined in the SAMS interface control document7.  Each 
button, when pressed, initiates a communication cycle with the SAMSServer.  The SAMSGui communicates with the 
SAMSServer over a TCP/IP socket connection.  Through the mode-specific graphical interfaces and the communication 

Start
SAMS

Application
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Mode

Calibrate
Mode

Operate
Mode

Diagnostic
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Figure 4: Conceptual operation of mode transitions with SAMSGui 
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link with the SAMSServer the SAMSGui allows the operator to configure and monitor the SAMS system.  Figure 5 
shows the graphical display of the SAMSGui application in Standby mode.   
 
 

 

In Figure 5, the SAMSGui display has four separate sections, each with special functionality.  The “Set Segment Data” 
section allows the operator to install or remove sensors, segments or degrees of freedom besides setting control system 
offsets and references.  The buttons in the “Show Segment Data” section bring up new displays with text boxes giving 
snapshots of current SAMS engineering data.  The “SAMS Configuration” buttons allow the operator to initialize the 
SAMS system and set new sensor references when the mirrors are aligned.  In the “Change Mode” section of the display 
there are three buttons.  The Diagnostic, Calibrate and Operate buttons execute the mode transitions illustrated in Figure 
4.  
 
When the operator selects the Operate mode button in Figure 5, the display in Figure 6 appears on the terminal screen.  
From the buttons in Figure 6, the operator may select one of several engineering data display buttons.  The operator may 
view the latest tip, tilt and piston commands that SAMS has computed (“Show TTP”).  The operator may view edge 

Figure 5:  SAMSGui Standby mode graphical interface 

Figure 6:  SAMSGui Operate mode graphical interface 
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sensor data by segment (“Show Segment Data”), or he may view the entire array of edge sensor values (“Show Edge  
Sensor Data”).  The operator can also view current control system offsets (“Show Offset”), the current reference or 
boundary condition segments (“Show Reference Segment”) or global radius of curvature sensor measurements (“Show 
GRoC”).  The “Return to Standby” button on the lower right corner of Figure 6 transitions the SAMSServer application 
back to Standby mode.  The SAMSGui application then returns to the Standby mode display shown in Figure 5. 
 
   
2.2 SAMSServer Application 
 
The SAMSServer application is the workhorse of the SAMS software package.  Figure 7 depicts the different interfaces 
managed by the SAMSServer.  The SAMSServer application serves as the communication hub between remote users 
(including the SAMSGui application), the SAMS SSP’s System Control Processor (SCP), and the HET’s PMC.   The 
SAMSServer also oversees the archival of all SAMS data, computes mirror correction commands, and provides textual 
and graphical displays showing the health and status of the SAMS system.  
 

 

 
All communication into and out of the SAMSServer is accomplished using TCP/IP socket connections.  The 
SAMSServer manages four sockets which allow access to the SAMS data being collected and provide a communication 
link between the SAMSServer and other systems comprising the SAMS system.  These sockets are the PMC Control 
Socket, the Command Socket, the Data Socket, and the SCP Socket.  The PMC Control Socket allows the SAMSServer 
to send actuator commands to the PMC during Influence Matrix and Edge Sensor calibrations.  This socket is also used 
during Operate mode to request the current truss temperature from the PMC.  The Command Socket is the socket that the 
SAMSGui uses to control the SAMSServer operation.  All SAMS configuration commands are sent to the SAMSServer 
through this connection.  The Data Socket can be used by any SAMS client to acquire the current SAMS data.  In 
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particular, the PMC uses this connection to request mirror correction commands during Operate mode.  The SCP Socket 
handles all communication between the SAMS electronics stack and the SAMSServer.   
 
The SAMSServer provides graphical and textual displays that inform the SAMS operator of the health and status of 
SAMS (Figure 8).  The graphical displays provided by the SAMSServer are stripcharts of the global error variance 
(GEV) metric, the average sensor gap metric, and the HET’s mean truss temperature.  The GEV is the control system’s 
performance metric computed from the measured shear errors of all active edge sensors and is a useful metric for 
monitoring how well SAMS is maintaining the mirror figure4,9.  The average  sensor gap measurement is the average gap 
of all active edge sensors and indicates the magnitude of the HET’s radius of curvature change due to temperature.  The 
telescope’s mean truss temperature is obtained from the PMC over the PMC Socket and also indicates the magnitude of 
the HET’s radius of curvature change due to temperature.  The textual displays provided by the SAMSServer are the 
Commands Received, Errors Encountered, and Bad Sensors text boxes.  These text boxes are all scrollable and each 
entry is time-tagged.  The Commands Received text box displays all commands received over the various socket ports.  
The Errors Encountered text box conatins all error conditions detected by SAMSServer.  The Bad Sensors text box 
contains all sensors that have been identified as providing erroneous data.   

 

Figure 8 SAMSServer display during Operate mode 
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During the HET’s nighttime operations, Operate mode is the primary mode of operation.  An illustration of the data and 
process flow within Operate mode is shown in Figure 1, and a brief description was given in section 2.1.   A detailed 
discussion of Operate Mode operation and control system flow is given in the references9.  On a typical night the 
telescope operator will start with SAMS in Standby mode.  The operator stacks the HET mirrors and executes “Set 
Reference Position” from the Standby mode display.  The operator then transitions to Operate mode where the system 
usually remains until the operator realigns the primary mirror again.  
 
During Operate mode the SAMSServer monitors the health of each sensor.  If a sensor is providing erroneous data the 
software will not compute a set of correction commands.  When an error is detected, all correction commands will be set 
to a value of zero.  The sensors that are identified as erroneous will be reported to the operator on the front panel of the 
SAMSServer.  This insures that no correction commands based on erroneous data are sent to the PMC.  Bad sensors are 
also identified and presented to the operator.  SAMS will continue to send zero-valued correction commands until the 
operator takes corrective action by removing the sensor from within Standby mode or fixing whatever problem the 
sensor is having.  
 
During operation there are several data files managed by the SAMSServer.  Each entry into these files is time-tagged.  
Some files are continuously updated while others are only updated in specific modes.  The SAMSServer updates the Log 
and Error files during all modes of operation.  The Log file contains all the information relative to SAMS system startup 
and records all incoming commands received over the various socket ports.  The Error file contains any errors that may 
have been encountered during SAMS operation.  The Log and Error files time tag every communication which they 
record.  Other data files are updated only during Operate mode.  These files contain edge sensor shear data, edge sensor 
gap data, edge sensor temperature data, truss temperature data, tip/tilt/piston correct ion commands, and global radius of 
curvature (GRoC) compensation bias data.   
 
 

CONCLUSION 
 
By utilizing COTS hardware and software products, the SAMS development team was able to successfully develop the 
SAMS control system software.  The use of the LabVIEW development environment was instrumental in the success of 
the SAMS system development.  The benefits of LabVIEW were evident early on during the support of the pre-CDR 
sub-array tests and continued until final installation and verification.  The resour ces provided by LabVIEW enabled the 
developers to create a set of applications that provided all the necessary capabilities to support the SAMS development. 
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