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ABSTRACT 
Wavefront sensing (WFS) is one of the key elements for active alignment of the new Wide-Field Corrector (WFC), as it 

tracks sidereal motion, with respect to the fixed Hobby-Eberly Telescope (HET) primary mirror. During a track, part of 

the 10m-pupil of the WFC can lie outside the primary periphery and be clipped off. An additional field-dependent 

central obscuration by the holes and baffles of the WFC leads to complex pupil geometries. The combination of these is 

a complicated dynamically varying non-circular telescope pupil. This unique problem to the WFS on the HET needs to 

be dealt with by choosing an appropriate set of orthonormal aberration polynomials during wavefront reconstruction. In 

this paper, three ways of computing orthonormal aberration polynomials and their coefficients are discussed. These are 

based on the Gram-Schmidt (GS) process, but differ in the way of computing key integrals during the GS process. The 

first method analytically computes the integrals, where a computer algebra program is used. The second uses the 

Gaussian quadrature over triangulated pupil geometries that approximate the true pupil shape. The last uses indirect 

numerical estimates of the integrals, which turned out to be natural by-products of the usual least-square Zernike 

polynomials fit. It is shown that the first method is limited to cases of simple pupil shapes, while the second can be 

applied to more general pupil shapes. However, when dealing with complicated dynamically varying non-circular 

pupils, the last method can be vastly more efficient than the second and enables the possibility of estimating 

orthonormal aberration coefficient on the fly. Also noticed is that the last method naturally takes into account the 

pixelation effect of pupil geometries due to pixel-based imaging sensors (e.g. CCDs). With these benefits, the last 

method can be used as a viable tool in real-time wavefront analysis over dynamically changing pupils as in the Hobby-

Eberly Telescope, which is otherwise vastly inefficient with analytic methods used in past studies. 
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1.  INTRODUCTION 
The HET will be upgraded with a 22-arcmin. diameter field of view wide field corrector (WFC), a new tracker and 

prime focus instrument package (PFIP),  and new metrology systems
[1]

.  The new corrector has much improved image 

quality and a 10 m pupil diameter. The periphery of the field will be used for guiding and wavefront sensing to provide 

the necessary feedback to keep the telescope correctly aligned.  The WFC will give 30 times larger observing area than 

the current HET corrector. It is a four-mirror design with two concave 1 meter diameter mirrors, one concave 0.9 meter 

diameter mirror, and one convex 0.23 m diameter mirror. The corrector is designed for feeding optical fibers at f/3.65 to 

minimize focal ratio degradation, and so the chief ray from all field angles is normal to the focal surface.  This is 

achieved with a concave spherical focal surface centered on the exit pupil.  The primary mirror spherical aberration and 

the off-axis aberrations in the wide field are controllable due to the first two mirrors being near pupils, and the second 

two mirrors being well separated from pupils.  The imaging performance is 0.5 arcseconds or better over the entire 22 

arcminute field of view, and vignetting is minimal.   

 

Wavefront sensing (WFS) is one of the key elements for active alignment of the WFC, as it tracks sidereal motion, with 

respect to the fixed HET primary mirror
[2,3]

. During a track, part of the 10m-pupil of the WFC can lie outside the 

primary periphery and be clipped off. An additional field-dependent central obscuration by the holes and baffles of the 

WFC leads to complex pupil geometries. The combination of these is a complicated dynamically varying non-circular 
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telescope pupil. This unique problem to the WFS on the HET needs to be dealt with by choosing an appropriate set of 

orthonormal aberration polynomials during wavefront reconstruction. Zernike polynomials, that constitute one 

particular orthonormal set over a unit disk, have been applied to various fields
[2–4]

. However, there are increasingly 

many optical systems whose pupils are non-circular. In addition, some systems exhibit variability in pupil shape as a 

function of field and/or pointing angles as the HET. On such pupils, Zernike polynomials loose orthogonality and it is 

desirable to use the coefficients of new orthonormal aberration polynomials. 

 

Studies show that orthonormal polynomials can be analytically constructed, via the Gram-Schmidt process, for non-

circular pupils in simple shape without shape variability, i.e. annulus, hexagon, ellipse and rectangle
[7–10]

. The studies 

overlook implementation aspect of the analytic method to wavefront data measured over more complex pixelated pupil 

shapes (due to pixel-based imaging sensors) with dynamic variability where the ability to obtain orthonormal aberration 

coefficients can be highly advantageous. Thus potential issues in using the method in such cases are yet to be properly 

addressed: Though the analytic method can, in principle, be extended to general pupils, as pixelated pupil shape 

becomes more complex, analytic calculations can be challenging; Any pupil shape change can compound complexity 

and inefficiency in executing the method in real-time, due to constructing the analytic forms of orthonormal 

polynomials whenever pupil shape changes. 

 

In this paper, three ways of computing orthonormal aberration polynomials and their coefficients are discussed. The 

methods use the Gram-Schmidt (GS) process, but differ in the way of computing key integrals during the GS process. 

The first method analytically computes the integrals, where a computer algebra program is used. The second uses the 

Gaussian quadrature over triangulated pupil geometry. The last uses indirect estimates of the integrals, which turned out 

to be natural by-products of the usual least-square Zernike polynomials fit. It is shown that the first method would be 

limited to simple pupil geometry, while the second can be applied to more general pupil shapes. However, when dealing 

with complicated variable non-circular pupils, the last method can be vastly more efficient than the second and enables 

the possibility of estimating orthonormal aberration coefficient on the fly. Also noticed is that the last method naturally 

takes into account the pixelation effect of pupil geometries due to pixel-based imaging sensors (e.g. CCDs). With these 

benefits, the last method can be used as a viable tool in real-time wavefront analysis over dynamically changing pupils 

as in the Hobby-Eberly Telescope, which is otherwise vastly inefficient with analytic methods used in past studies. 

 

2. ORTHONORMAL ABERRATION POLYNOMIALS 
2.1 Orthonormal aberration polynomials and the Gram-Schmidt orthonormalization 

The Zernike polynomials (Zi) can be identified by radial and angular orders [n,m]
[11]

. The polynomial index scheme 

used here follows: Zi[n1,m1] precedes Zj[n2,m2] if n1 < n2; if n1 = n2 and |m1| < |m2|, Zi precedes Zj ; if n1 = n2, |m1| 

= |m2|, and m1 < 0, Zi precedes Zj . Suppose a wavefront function W(x, y) on a non-circular pupil E that is a subset of a 

unit disk S. Assume that W can be described in terms of M Zernike polynomials. 

W = 1Z1 + 2Z2 + + M ZM =
T Z         (1) 

where and Z  are the column vectors of i and Zi respectively, and T means transpose. The estimation of i can be 

written with A being the area of E as, 

j
j=1

M

Fij = j
j=1

M ZiZ j
AE

dA =
ZiW

AE
dA          (2) 

Zi are not orthonormal over E and thus a M x M matrix F, whose (i, j) element is Fij , is neither unitary nor diagonal. The 

estimate of i can still be given by, 

i,e = Gij
j=1

M ZiW

AE
dA            (3) 

with Gij being the (i,j) element of G = F 1
. i.e is neither i  nor the desired orthonormal aberration coefficient ( i) of 

W on E, but closely related to i as follows.  

It is widely known that new orthonormal polynomials, say Ui, can be determined by the Gram-Schmidt 

orthonormalization of a known set of orthonormal polynomials (Zj in our case)
 [12]

. Letting U1 = Z1, we have 
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Vj = Z j C jk
k=1

j 1

Uk , U j = Vj A / VjE
VjdA     (4) 

with Cjk = Z jE
UkdA / A  where j = 1, 2, … ,M. Using Eq. 4, the following algebraic relation is obtained. 

ViVj
AE
dA = Fij + Cim

n=1

j 1

mnCnj
m=1

i 1

Cin
n=1

i 1

Cnj Cim
m=1

j 1

Cmj    (5) 

with mn being the Kronecker delta. Given the orthogonality of Vi, the left hand size of Eq. 5 equals to Cii
2  for I = j or 

vanishes for i j . This reduces Eq. 5 to the following algebraic expressions of the Gram-Schmidt orthonormalization 

coefficient Cij . 

Cii = Fii Cik
2

k=1

i 1

, Cij =
Fij
C jj

CikC jk

C jjk=1

j 1

    (6) 

Ci,j is essentially the (i,j) element of a M x M lower triangle matrix C which can be obtained from the Cholesky 

decomposition of F as noted in a different way elsewhere [9]. From Eq. 4, we obviously obtain  

Z = CU and U = DZ       (7) 

where D is C
-1

. Multiplying e  (the vector of i,e) to Eq. 7 yields a relation between e and , also recognized in [9], 

as, 

e
T
C =

T and TC 1
=

TD = e
T      (8) 

The above orthonormalization process clearly indicates that knowing F is central to computing C and constructing 

analytic forms of U  which can be fitted to wavefront data to determine . This analytic derivation of F can be done 

for simple pupil shapes, but it can be non-trivial over a complicated pupil domain even using a computer algebra 

software
[13]

.  

 

2.2 Semi-analytic approach to computing the integral matrix F 

One way of computing F is to do the integration over a set of smaller and simpler sub-domains of E and then the sum of 

these integrals yields the total. The simplest shape for the sub-domain is a triangle and the entire pupil can be 

represented by a set of triangle elements, for which one may use any 2D triangulation codes. As these codes tend to 

produce triangles in arbitrary shapes and orientations, it is convenient to compute the integral over a simple triangle 

(A’B’C’) to which the actual triangle (ABC) is transformed. This corresponds to an Affine transform where x and y in 

ABC are linear functions of u and v in A’B’C’ as, 

x
y

=
a b
d e

u
v

+
c
f

     (9) 

One’s ABC of choice is subjective and we use the one with A(0,0), B(1,1), and C(1,-1), called the unit triangle. By 

requiring A,B,C to be transformed to A ,B ,C , respectively, the Affine coefficients are obtained as follows, 

a =
xB 2xA + xC

2
, b =

xB xC
2

, c = xA , d =
yB 2yA + yC

2
, e =

yB yC
2

, f = yA  (10) 

Fj,k over the i-th triangle is given as, 

Fjk
(i)

=
Ji
A

Z ju

u
(u, v)Zk (u, v)dv du

0

1
    (11) 

where Ji is the determinant of the Jacobian matrix of Eq. 7 and corresponds to the area of the i-th triangle (thus A = 

Ji ). Repeating Eq. 11 for all j,k and summing Fjk
(1)

over I yields F on E. It is certainly possible to obtain the closed-

form expression of the integral in terms of the Affine coefficients using a computer algebra system although it becomes 

more complicated for higher j,k. One can, however, find it more practical to obtain F numerically. As Zi is a polynomial 

in x and y that are linear functions of u and v, it is perhaps best to use Gauss-Legendre N-point quadrature for the above 

integral. With N lager than the half of the sum of the radial orders of Zj and Zk, the quadrature can exactly compute the 

above integral. Equation 11 is re-written as, 
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Fjk
(i)

=
Ji
A

wpwqZ j (up , vq )Zk (up , vq )
q

N

p

N

    (12) 

where w is the Gauss-Legendre weight, up = (tp +1)/2 and vq = uptq for this ABC with the Gauss-Legendre abscissa t 

defined within [-1,1]. W and t are computed as described in [R]. The use of a Cartesian coordinate system for the above 

integral will be appropriate for most cases as the pupil function of an optical system is normally recorded in a 2D 

rectangular pixel grid. The illuminated pixels represent the actual pupil area and can be extracted to form the geometric 

boundaries of the pupil, which are then used to produce a triangulated pupil. The wavefront map can be expanded into 

the new orthonormal polynomials over the grid. If desired, one can use the relationship in Eq. 8 to convert the expansion 

coefficients into those of other orthonormal aberration polynomials over a different pupil domain. 

 

2.3 Indirect numerical estimation approach to computing the integral matrix F 

However, analytically computing F over complex pupil can be out of the question. Although computer algebra software 

or numerical quadrature could be helpful, it is still required to extract (or approximate) the pupil geometry from a 

measured pupil illumination and/or to divide the geometry into a number of integrable simpler sub-domains, which 

would make the whole analytic approach increasingly complicated and vastly inefficient when a large sets of 

orthonormal polynomials need to be obtained for variable non-circular pupils. In addition, it would be much harder to 

incorporate the pixelation effect, intrinsic to digital wavefront data, into analytic derivations of F and U , and ultimately 

into estimating . Considering that W is recorded on N discrete pixels within E, Eq. 3 can be written in a matrix form 

as, 

W = Z e
ˆ
e = (Z

TZ) 1ZTW e     (13) 

where Z is a N x M matrix containing M Zernike polynomials evaluated on the given pixelated pupil (Epix) and ˆe is the 

estimate of e . Noting that F can be estimated by F = (ZTZ) / N , the estimate of  on Epix is given as, 

ˆ
e
T C =

ˆT T       (14) 

where C , the estimate of C, is given by using F  in Eq. 6. The significant result of Eq. 13 and 14 is threefold: i) all 

estimated quantities are natural by-products of the least square fit of Zernike polynomials to the discrete wavefront 

measurement, ii) the estimated coefficients are obtained over the as-measured pixelated pupil geometry but essentially 

without knowing the functional forms of the orthonormal polynomials over the true pupil E, and iii) the optimality of  

while keeping the simplicity and speed of the usual least-square Zernike fit. 

 

 

3. EXAMPLES 

 
 

Figure 1. The four pupil shapes used in the comparison of the semi-analytic approach to the analytic method. (From 

left) Annular, hexagonal, elliptical, and square pupil. Red circles indicate the unit disk over which the Zernike 

polynomials are orthonormal. 

 

In the first example, we compare the semi-analytic method to the exact analytic method. For this, we use the four pupil 

shapes as shown in Fig. 1. These pupil shapes are chosen because there exist the analytic expressions of the orthonormal 

aberration polynomials for these shapes given in Table 2, 6, 12 of Ref. [10]. In the figure, the triangle elements are the 
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Index Using the proposed method Using the analytic formulae
Annular Hexagon E]lipse Square Annular Hexagon Ellipse Square

o 1.000000 1.000000 I .000000 1.000000 1.000000 1.000000 1.000000 1.000000
002.02 0.894427 1.095445 1.000000 1.224745 0.894427 1.095445 1.000000 1.224745
03Q3 0.894427 1095445 1.250000 1.224745 0894427 1.095445 1.250000 1.224745

Do&oj -0.577350 0.340997 0.363112 0.790469 -0.577350 0.340997 0.363112 0.790569
Do4 1.333333 1.181249 1.164682 1.369306 1.333333 1.181249 1.164682 1.369306

00505 0.872872 1.195229 1.250000 1.224745 0.872872 1.195229 1.250000 1.224745

06.OJ - - -0.473399 1.936492 0.872872 1.195229 -0.473399 1.224745
00604 - - -0.569797 1.936492 0.872872 1.195229 -0.569797 1.224745
00606 0.872872 1.195229 1.341568 1.936492 0.872872 1.195229 1.341568 1.224745
00702 -0.146795 0.569383 1.226462 1.234582 -0.146795 0.569383 1.226462 1.234582
007.07 1.037999 1.258171 1.605999 1.454969 1.037999 1.258171 1.605999 1,454969
00503 -0.146795 0569383 0.268179 1.234582 -0.146795 0.569383 0.268179 1.234582
D08,08 1.037999 1.258171 1.053507 1.454969 1.037999 1.258171 1.053507 1.454969
00902 - - -0.983725 -1.405634 - - -0.983725 -1.405634
09,Q7 - - -0.781419 -0.922938 - - -0.781419 -0.922938
099 0.867722 1.490712 1.520179 2.200852 0.867722 1.490712 1.520179 2.200852

c

 

 

sub-domains for the integration used in the semi-analytic method. The annular and elliptical pupils contain a large 

number of triangle elements to approximate the curved boundaries, whereas the polygonal pupils (hexagon and square) 

can be exactly reproduced with only a handful of triangles. The non-zero elements of the conversion matrices (D in Eq. 

7) of the pupils are given for j, k up to 9 in Table 1.  

 

Table 1. Non-zero elements of D given for the four pupils by the semi-analytic method and the existing analytic 

formulae (i, j up to 9) 

 
The coefficients by the semi-analytic method match those given by the analytic formulae. The semi-analytic method 

relies on triangulated pupil geometries. Therefore, polygonal pupils, e.g. hexagon, can be exactly reproduced by few 

triangles, whereas those with curved boundaries can only be approximated. As a result, polynomials constructed using 

this approximation naturally differ from those using the exact geometry. Using more and finer triangles along the 

curved boundaries, but at a cost of computation time, the discrepancy can certainly be reduced. For example, the 

annular pupil was approximated by 61289 elements and the resultant conversion coefficients differ from those with the 

exact pupil geometry by 10
8
. The computation took 4 minutes. With 5642 elements, 10

5
 of difference was achieved 

in 80 seconds of computing time. However, the pupil geometry in wavefront analysis is often assumed or estimated by 

using pupil illumination measurements. The uncertainty in the pupil shape is likely to be dominant over the 

approximation error due to triangulation. 

 

 

Figure 2. (A) Wavefront map on Pupil A, (B) The triangular integration domains of Pupil A.  

 

(B) (A)
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i True Iii Method X Method Y IX-Yl
1 -0.0076 -0.0076 -0.0072 0.434x103
2 -0.1133 -0.1134 -0.1134 0.051x103
3 -0.0233 -0.0234 -0.0235 0.055x103
4 0.2741 0.2740 0.2741 0.103x103
5 -0.0501 -0.0502 -0.0502 0.012x103
6 0.1706 0.1706 0.1706 0.023x103
7 -0.1108 -0.1110 -0.1107 0.247x103
8 -0.0409 -0.0411 -0.0411 0.025x103
9 -0.1064 -0.1062 -0.1062 0.070x103
10 -0.0369 -0.0365 -0.0365 0.00lxlO3
11 -0.0648 -0.0648 -0.0645 0.310x103
12 -0.0057 -0.0058 -0.0058 0.063x103
13 -0.1070 -0.1071 -0.1072 0.109x103
14 -0.0750 -0.0748 -0.0749 0.111x103
15 0.0464 0.0466 0.0466 0.018x io
4,, 0.1704 0.1703 0.1704 0.034x103

 

 

In the second example, we compare the numerical estimation method to the semi-analytic approach for a more 

complicated non-circular pupil. A sample wavefront was constructed over a 256x256 square grid by a set of the first 36 

Zernike coefficients that are given from the standard implementation of the Kolmogoroff turbulence model
[5]

 with D/r0 

= 1.4. The synthetic wavefront is filtered through the pupil geometry shown in Fig. 2-(A). The left panel in the figure 

shows the triangular sub-domains that were used in computing the integral matrix F and thus D via the semi-analytic 

integration method described in Section 2.2. The given true Zernike coefficients are converted to the orthonormal 

aberration coefficients of which the first 15 are listed in “True i” columns in Table 2. These listed coefficients are then 

estimated by fitting the known orthonormal polynomials (given by D) to the wavefront. The estimates from this method 

are listed in the column called “Method X” in Table 2. The orthonormal coefficients are also estimated by using the 

indirect numerical estimation method as described in Section 2.3. The results from this method are listed in column 

“Method Y”. The difference between the results from two methods is shown in “|X Y|” column.  

Table 2. ˆi  by the semi-analytic approach (Method X) and the numerical estimation method (Method Y). 

 
 

Both methods closely approximate the true orthonormal aberration coefficients. The relative difference between the 

wavefront variances (
2
) given by two methods is negligible (less than 0.2%) as compared to the true variance on Pupil 

A. The difference between Method X and Method Y appears to be minimal, in that the relative difference is less than 

1% in most cases. In Table 2, we compare some of the elements of D given by Method X with those of D  by Method 

Y. Note that i, j up to 11 are used. We omit D̂ij whose absolute values are smaller than the expected estimation error of 

0.003. Apparently, Method Y identifies all of the coefficients important for analytically expressing the new 

polynomials. Also, D̂ij are close to Dij  except a few with small contributions. Due to analytically computing D, 

Method X took roughly 72 seconds longer than Method Y did on the same desktop computer. Therefore, the efficiency 

gain by using Method Y in dealing with dynamically variable non-circular pupils can be immense. 
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i, j D D i, j Dj D
01,01 1.000 1.000 08,08 1.214 1.214
02,02 1.025 1.025 09,02 -0.006 -0.003
03,03 1.022 1.022 09,07 -0.006 -0.003
04,01 0.109 0.108 09,09 1.068 1.068
04,04 1.355 1.355 10,03 -0.008 -0.011
05,05 1.106 1.106 10,08 -0.007 -0.009
06,01 -0.004 -0.004 10,10 1.385 1.385
06,04 -0.009 -0.008 11,01 0.827 0.827
06,06 1.105 1.104 11,04 0.098 0.096
07,02 0.495 0.493 11,06 -0.007 -0.006
07,07 1.221 1.221 11,11 1.632 1.634
08,03 0.484 0.484 - - -

 

 

 
 

In the last example, another sample wavefront was constructed over a 256x256 square grid by a set of the first 36 

Zernike coefficients given by the same atmospheric model as used previously. This synthetic wavefront is then filtered 

through the pupil geometry shown in Fig. 3. Note carefully that the pupil is not only complex in shape, but also 

dynamically changes in shape as a function of an arbitrary parameter called “pupil position”. This is a typical pupil 

shape variation of the HET. In this example, we aim to see what difference there is in using orthonormal aberration 

polynomials instead of Zernike polynomials over non-circular pupils. For this, we use the numerical estimation method 

for computing the orthonormal aberration coefficients. We use the estimated variance of the wavefront as the 

comparison metric. That is, the variance of the synthetic wavefront is estimated in three ways: the true variance of the 

wavefront data (
2
), the sum of squares of the first 15 of orthonormal aberration coefficients (

2
( )), and the sum of 

squares of the first 15 of Zernike aberration coefficients (
2
( )). These variances are plotted in Fig. 4.  

 

 
Figure 3. Wavefront map over dynamically varying pupil. From left, the pupil position parameter is 0, 0.3, 0.5, 0.7, 1.  

 

As expected, 
2
( ) closely approximates 

2
, while 

2
( ) differs from the true value significantly. As the pupil shape 

becomes closer to the unit circle (i.e. pupil position  0.7), 
2
( ) asymptotes the other two curves, but quickly diverts 

away as the pupil shape starts departing from the unit disk again. The last 21 of orthonormal aberration coefficients are 

also estimated independently and the sum of squares of these (
2
( )) matches the true difference 

2
 = 

2
( )

2
. 

 

Table 3. Dij by the semi-analytic approach and ˆDij by the numerical estimation method.
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Figure 4.Variance estimates given by different methods. 

 

4. SUMMARY 
In this paper, we discussed three different methods of computing orthonormal aberration polynomials over variable non-

circular pupils. As demonstrated, all methods are based on the Gram-Schmidt process and can be a useful tool for 

constructing orthonormal aberration polynomials over non-circular pupils, where the usual Zernike polynomials lose 

their orthogonality. The fully analytic approach can be replaced by the semi-analytic approach or the numerical 

estimation method. In the semi-analytic method, the pupil domain is described by simple triangle elements and key 

integrals of the GS process are performed over these elements via Gaussian Quadrature. Although accurate, its 

execution speed is substantially compromised. This makes this approach better suit for computing the polynomials over 

non-circular pupils without shape variability. In comparison to this method, the indirect numerical estimation method 

shows much faster execution speed with minimal compromise in estimation accuracy. This feature is especially 

desirable when dealing with complex pupils with dynamic shape variability. It is also shown that this approach can 

naturally take into account the pixelation effect due to pixel-based imaging sensors used in wavefront sensing. 

Additionally, it uses the routine least-square fit of Zernike polynomials to wavefront measurements, but without having 

to know the functional forms of the orthonormal polynomials. This effectively eliminates the time consuming part from 

the estimation, thereby keeping the simplicity and speed of the usual least-square fit while ensuring the optimality of the 

resultant orthonormal aberration coefficients over a given pixelated pupil geometry. These features are not only ideal for 

real-time wavefront analysis over dynamically varying pixelated pupils, but also useful in extending the method to 

estimating orthonormal slope aberration coefficients, where mean wavefront slope is measured over a further 

complicated geometry formed by variable noncircular pupils and a coarse slope sampling grid. Currently, we are 

implementing the last method in wavefront reconstruction using Shack-Hartmann wavefront sensor data. The results 

from the presented analysis clearly indicates that the last method can be used as a viable tool in real-time wavefront 

analysis over dynamically changing pupils of the Hobby-Eberly Telescope, which is otherwise vastly inefficient with 

analytic methods used in past studies. Portions of this paper have been presented in Ref. [14]. 
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