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ABSTRACT

We present the development framework for the distributed control systems, scripting frontend, and monitoring
facilities of the recently upgraded Hobby-Eberly Telescope (HET). A common flexible control and data acquisition
layer in C++, with message passing implemented on top of ZeroMQ, wraps the final designs of each new hardware
component including tracking, metrology, instrumentation and calibration equipment. A homogeneous command,
response and event layer normalizes the diversity of the lower level software interfaces easing the development
of the Telescope Control System (TCS). Applications developed in the framework easily interface to the new
tracker and legacy instrumentation of the primary mirror, weather, dome, and tracker support structure. The
framework facilitates testing, vetting, and characterization of the telescope and TCS. Examples of the real-time
monitoring capabilities and the Python scripting methods of various telescope components yield insight into
overall system performance. Lessons learned along the way, future refinements, and anticipated enhancements,
are detailed.
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1. INTRODUCTION

The HET has recently completed a massive upgrade1, 2 of a majority of its primary tracking,3, 4 metrology,5

and spectroscopy6 instrumentation in preparation for the Hobby-Eberly Telescope Dark Energy Experiment
(HETDEX). Driving, and abstracting, this new hardware is a diverse, yet thin and accessible, set of middleware
layers built of a software framework wrapping open source tools providing consistent interprocess communication,
multithreading, timing, configuration, and logging. The variety of hardware components now deployed at HET
requires the flexibility of a distributed system to manage and impose the desired state of the telescope, for
any science driven synchronization points, i.e. exposures, metrological sampling, positioning feedback, etc. The
upgrade project has just entered the instrument commissioning phase and system integration is nearing the point
where it sufficiently supports science grade data acquisition.

The initial effort to wrangle the software for the Wide Field Upgrade (WFU) took a hardware-centric approach
focusing on abstracting the variety of the new hardware at a fairly low level.7 This abstraction was then exposed
to a Python scripting layer, via automatically generated methods. This produced many interfaces that went
unused, adding unnecessary clutter and confusion to the code base. At the time, much of the new hardware, and
the related interconnect, was still being determined and refined so a natural focus on a generic control system
architecture, with the flexibility to easily replace or reconfigure the hardware abstraction layer, persisted with
little development of the business logic required to coordinate an astronomical observation.

In this subsequent effort, motivators for imposing some standardization on the software for the next generation
of HET control systems include increased developer efficiency, greater adaptability to requirement changes at
the business logic level, thorough documentation of the entry points to each control system, and a maintainable
and transition-able code base. The reliance on third-party libraries is minimal, attempting to keep things as lean
and portable as possible.
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2. CONFIGURATION MANAGEMENT

The distributed nature of TCS, the complexity of the hardware represented, the need to reconfigure components
for testing, and cyclic nature of system integration and debugging require a flexible approach to configuration.
The applications comprising TCS (subsystems), each accept a configuration file containing attribute-value pairs
which may be overridden at runtime by modifying the vales of the configuration with command line options
corresponding to the supported attributes. The flat configuration file may be extended to pull in additional
configuration files producing a configuration tree. However, in that case, only the root node is overridable by the
command line. The Little Template Library (LTL), documented at http://www.as.utexas.edu/~drory/ltl,
provides the API leveraged to support subsystem configuration and command line parsing. LTL is also used
throughout TCS for numerics as well as FITS I/O.

Subsystems of TCS communicate with each other over configurable TCP/IP routes. A service provides
runtime name resolution of these routes. In the case where a configuration file is given as well, the order of
precedence for the three layers of configuration, from least to greatest, is configuration file, name resolution, then
command line.

3. INTERPROCESS COMMUNICATION

An initial goal of the framework is to provide a dependable and robust communication channel that is easily
accessible from the application layer, with only a few lines of C++, Python, or Bash. The subsystems and
their clients, communicate using JavaScript Object Notation (JSON) strings, augmented by an optional untyped
binary data block, as either broadcast events or in a command-response relationship. These two independent
channels of communication provide a filterable publish-subscribe event interface and a blocking or non-blocking
Remote Procedure Call (RPC) interface. The contents of the message and event strings are a depth one set
of attribute-value pairs, a subset being reserved for metadata. These are organized by a hierarchy of system,
source, and key, in the case of broadcast events and by acknowledgement, response, done acknowledgment, and
exception, in the case of messages and responses. Aside from the legacy applications, all HET processes in the
Wide Field Upgrade use these message-reply and broadcast protocols. These protocols, the datatypes, and their
interfaces are encapsulated in a set of C++ classes and a subset of them exposed through the scripting layer.

3.1 Message interface

A TCS subsystem defines its set of available services inheriting from, and extending as needed, the message
handler∗ class and registers those with a receiver. Each supported operation on, or query of, TCS has a cor-
responding handler implementation. Each handler may be registered as either reentrant or non-reentrant. In
the later case, the receiver ensures that each invocation has mutually exclusive access to the handler. Once the
handlers are registered and the receiver listening, the handler methods are available to receive messages from
remote senders. The messaging interface is implemented on top of ZeroMQ DEALER/ROUTER socket pairs,
see http://zguide.zeromq.org/page:all for further documentation of the ZeroMQ infrastructure.

Handlers may be invoked in either a blocking or non-blocking manner, referred to as synchronously and
asynchronously respectfully. Handler process methods are executed in threads fetched from a statically allocated
thread pool to reduce startup overhead. When called synchronously, control is returned to the caller once the
done acknowledgement is received. When called asynchronously, control is returned to the caller as soon as receipt
of the message is acknowledged. Any responses to asynchronous calls, including the done acknowledgement are
made available to the caller through a queueing system that aggregates all responses to asynchronous messages
associated with the sender. A handler that attempts to respond with more than a final done acknowledgement
when invoked synchronously generates an exception so there is an explicit contract between the caller of a handler
that responds with a sequence of responses, that it be called only asynchronously. This exception is generated on
the sender side, see Sec. 3.4. The transaction diagram in Table 3.1 summarizes the relationship between sender
and receiver in the synchronous case. In the asynchronous case, responses are either dropped by the sender

∗Various C++ classes are referenced in this document by the abstract functionality they encapsulate, to avoid reim-

plementing class documentation in this paper.
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Table 1.

Client Sender Network Receiver Service

Message → Send →

← Acknowledgment

→ Process

Response ← Send ← ← Response

upon receipt, or fed into a queue that can be consumed by the client. Scenarios exist for both use cases of this
non-blocking interface.

The relevant performance metrics for such a system are less tangible than for those projects which strive
to handle large numbers of concurrent requests. The telescope system, in general, moves fairly slowly and, at
any given time, there can be only a single target state for the entire system. This results in very few truly
concurrent invocations of the same underlying process. That aside, one method of evaluating the performance of
the messaging interface is to examine the relative throughput of a handler that implements a NOOP. We define
this metric as the number of messages handled by a receiver in a second, mps. The times at which messages
are sent, received, responded to, and when the responses are received (Ms, Mr, Rs, and Rr respectfully) are
integrated over messages sent to derive the mps throughput. For N messages sent, we determine a throughput,
for the full command-response transaction, by

mps =
N

∑N

i=1(Rri − Csi)
.

Such tests are highly system and setup dependent. Between a sending and receiving pair, both executing on the
same laptop, we realize ≈ 2k mps, see Appendix A for example timings from alternate test setups. In Fig. 1
we see a sustained average command received time of .1852 Milliseconds and average complete response time of
.6380 Milliseconds. In practice, the round trip component of this metric is dominated by the communication
with the underlying hardware and completion of the requested action. This may vary wildly, depending on the
behavior imposed by the done acknowledgement synchronization point defined by the handler.
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Figure 1. For each of 100k messages sent, the differences between send, receive and response times are shown along with

the lines for the mean time-of-flight of the command and mean total transaction time.
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3.2 Event interface

The event interface provides a publish-subscribe mechanism whereby a subsystem can broadcast a set of attribute-
value pairs to all listening processes. Each subsystem is identified by a system name, and may instantiate multiple
event sources on whatever contextual boundaries (global, class, method, singleton, etc) are appropriate for the
particular application.

Each event broadcast is associated with a system, source, and key. The realtime event consumer side is
implemented by instantiating an event sink, associating it with a set of event sources for which to listen, optionally
applying independent filters over system, source, and key, then calling a method to wait on the next event that
passes through the filter. The event sink must process the filtered events on an as received basis, calling a method
when ready to handle the next event and blocking until received, or an optional timeout occurs.

Listing 1. An event broadcast in the scope of a class inheriting a C++ event source.

new_event ( "my_key", fptime :: now() )

<< make_pair ( "attr1", 1 )

<< make_pair ( "attr2", "two" )

<< make_pair ( "attr3", 3.0f ) << ende ;

From whatever necessary application scope, an event can be instantiated, parameterized with attribute-
value pairs, then broadcast for system wide consumption including realtime plotting. The broadcast events are
captured in persistent storage for post-analysis. This allows a subsystem developer to inject events wherever
needed for debugging, profiling, and event driven coupling of subsystems.

3.3 The anatomy of the payload

Events and messages are derived from a base payload which provides thread-safe serialization and deserialization
of the information over the wire. The payload provides access to the transmitted information via direct value
lookup by attribute name and/or generalized, typeless, iteration over attributes. In the case of both events
and messages, a suite of metadata accompanies each payload. This metadata provides timing information used
to determine the timeliness of the communication, the timeliness of the information carried, and identifying
information for the originator of the message or event.

The metadata of the payload is extended in the message, to include additional routing information. Each
message response falls in to one of four categories; a message acknowledgement, an intermediate response to
the original message, a final response the original message, and an exception. This tagging of responses is used
to impose the implied state change on the (potentially blocking) sender and/or route the information to the
appropriate queue. The message acknowledgment response is transparent to the caller, unless there is a timeout
in sending the message, then an exception is thrown.

3.4 Exception migration

The framework provides the ability for called subsystems to respond with an exception. This is implemented
such that any exception thrown within the scope of a handler’s invocation is caught and relayed to the caller.
Any exceptions that extend the base TCS exception have well defined types on both sides of the wire. All
other exceptions are of a generic type. This design approach allows exceptions in third party lower level code to
propagate back to the caller so that both sides of the transaction are able to adapt to the exception. The base
class is extended to facilitate finer grained remote exception handling provided that both sides of the wire agree
on the type. In general, compile time bindings at this level are avoided.

For asynchronous handler invocations, where responses may be one or many, any exception is queued in the
same manner as non-exception responses. As the response queue is consumed on the sending side, each response
must be queried by the caller for the exception flag in order to determine that an error occurred. This use case
occurs sparsely and typically only for the transmission of image streams to a graphical user interface (GUI) and
when scripting, see Sec. 6, non-blocking handler invocations.
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3.5 Wiretapping

The messaging interface has been instrumented such that the traffic between any subsystems can be ”tapped”
for debugging or profiling purposes. The event interface is leveraged here to generate an event corresponding,
less any binary data, to each message sent or received. Each subsystem exposes a handler that allows this
functionality to be turned on and off. The feature is implemented such that the overhead of generating these
tapping events is realized at all times, the broadcast of the event is the only thing that is runtime configurable.
This approach allows for the feature to be turned on and off with no noticeable impact on the realtime system
other than a manageable increase to the volume of information on the network.

4. MULTITHREADING

The framework presently imposes no constraints on how subsystems implement multiple threads but uses the
TinyThread++ library internally, found at http://tinythreadpp.bitsnbites.eu, for a C++11 like threading
mechanism. For TCS, the library is augmented with a thread worker class and a wait mechanism that attempts
to handle spurious wakes, as well as return to the caller the time spent waiting. Initially, the GNU compilers in
use were not C++11 aware enough to rely on the new threading interface. It is assumed, when so motivated,
that transitioning to C++11 threads will not require a great deal of code modifications.

5. TIME

Time is sampled and represented in seconds since epoch, with fixed nanoseconds precision, throughout TCS.
There are two timestamps associated with each message and event, applied by the framework layer. These are
the time at which the information was sent, wire time, and the time that corresponds to the generation of the
information in the payload, data time. Messages and events that have been deserialized have an additional receive
time. Many pieces of information are aggregated, augmented, and then resent as broadcast events requiring the
flexibility to adjust the data time while the wire time remains opaque to the application layer.

One example of this is the combining of positional information to derive a pointing on sky. The tracker
and structure positions, information from two disjointly sampled realtime systems, are coupled in TCS to derive
the telescope’s current right ascension and declination. The data time placed on the subsequent RA/Dec event
generated by TCS, prior to broadcast, carries that of the original tracker position, given that it is sampled at a
much greater rate than the structure position, while the wire time of the new tertiary event represents its time
of broadcast.

6. SCRIPTING

The primary supported scripting language for TCS is Python, with helper applications exposing a stateful
scripting layer to Bash, or any other Linux shell. The Python bindings to subsystem handlers are direct, 1↔ 1
with the C++ handler definitions, and are implemented at runtime by negotiation between the script and the
subsystem(s) to which it connects. Each subsystem communicates the effective runtime API to the connecting
Python object that then replicates the remote handlers as local methods. When called, the local methods resolve
to a send of a message containing the parameters of the call to the connected receiver, and then the resulting
handler invocation. The JSON string response associated with the final done acknowledgement is returned to
the caller as a Python dictionary.

These handler bindings are all implemented in both a blocking and non-blocking manner. The non-blocking
interfaces are callable by suffixing the relevant method name by async. The call to the the non-blocking method
replies with a message identifier with which the caller can wait for a response at a later synchronization point
in the script. If an exception occurs on the remote end, it is held until the script waits on the initial message’s
identifier, at which point a Python exception is generated.

The state of the subsystem at the point where a done acknowledgement is sent implies a certain relationship
between the caller and the subsystem. For instance, once a trajectory is loaded in to TCS it is activated, or sent
on that trajectory, by a go next() command. This command may be parameterized to request that not only the
tracker be setup on trajectory, but that the dome, structure, guide probes, wave front sensors, etc., or any subset,
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be setup as well, prior to returning. In such a case, the state implied by a successful return of the command is
a function of the parameterization and success of the individual requests. Though currently handled through a
GUI in practice, where state transitions are reflected in an event driven manner, and reaction timing handled
by the user, scripts may choose to implement control flow and concurrency using this asynchronous invocation
method.

7. DATA MANAGEMENT

The telescope state data and logging, apart from any imagery, spectra, or other instrument data, are represented
as a timeseries by the events generated by the system. These are captured and recorded by one or more
monitoring services. Though the monitor supports relay of the JSON documents to a MongoDB instance, the
current practice is to store these in a nightly SQLite database with a minimal schema that exposes a NOSQL-like
representation of the information supporting extension and removal of attributes from individual events without
modification of the schema. The underlying schema is set when the first event, for any given system, source, and
key, is received. Any deviation from that mapping, over the runtime of the monitoring process, is ignored.

Events are organized by identifier, unique to the monitoring process, over data time and context, along with
their system, source, and key names and data time in one table. Another table stores the attributes and their
values. These two tables are joined over event identifier to reproduce the event stream as a timeseries.

The SQLite interface, though cumbersome for live interaction, with a typical nightly database currently
resolving to ≈ 7 gigabytes of information, is the preferred data representation at this point in commissioning.
The nightly database files provide a portable and easily replicated data store that is immediately accessible to
those familiar with SQL and having knowledge of the static schema. Realtime event consumers are currently
assumed to acquire information via the C++ event interface.

8. FUTURE WORK

The HET currently struggles to manage and capitalize on the large volume of telescope state information gathered
throughout the course of a night. Though a rich and fairly complete picture of each night’s activities is captured,
little exists in the way of user friendly tools for accessing this information in an efficient manner. Through the
initial telescope commissioning phase, much of the analysis of system performance has been handled by labori-
ously sifting through information extracted in an ad hoc manner to common ASCII table format then massaged
into the preferred environment of the analyst driving things. A well defined, standard, systematic and globally
accepted approach to handling this information is needed. Current efforts to mitigate this include a Python API
providing access to the event attribute-value pairs as Numpy arrays of timeseries and the application of reusable
report generation tools that provide an analysis picture of a predefined subset of the night’s information.

An initial requirement on the new control system was that the information being passed between subsystems
be human readable. This was motivated by the user experiences with the legacy system’s approach to interprocess
communication which was primarily driven by global shared memory, so the information always remained in a
binary C data structure form which hindered interprocess debugging. This was one of the primary factors in
deciding to use JSON as a transport format but future efforts may investigate other mechanisms that avoid
forcing the transmitted data structures through a string representation.

The broadcast mechanism employed by the framework relies on piecewise regular expression filtering of
the system, source, and key. This architecture currently prevents the use of ZeroMQ’s server side subscription
filtering, which is implemented via a message prefix. This has little impact on the systems built of the framework
aside from preventing the broadcast of large data volumes, as they would be filtered on the client side of each
subscriber. This server side filtering functionality should be replicated at the level of the event sink to support
the broadcast of events that include imagery and spectra.
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9. CONCLUSION

The new control system framework has rapidly evolved to meet the challenges of the design, deployment, and
commissioning of the next-generation of control and data acquisition systems at HET. It is successfully leveraged
by each of the many distributed processes that make up the new TCS, without imposing idiomatic constraints.
However, future refactoring efforts will, for the sake of maintainable, move to normalize the variety of design
patterns that have been enabled. A generally applicable set of simple, robust, control system APIs has evolved
as a side-effect of satisfying the requirements of the WFU and the HETDEX project.

APPENDIX A. MESSAGE TIMINGS

Round trip command-response times were profiled on a few combinations of systems. System A is a MacBook
Pro ( 2015), B is a virtual machine hosted on system A, system C is a virtual machine hosted on hardware at the
HET, system D is the LRS2 spectrograph readout computer at HET, and system E is the VIRUS spectrograph
readout computer at HET. The specifics of the network interconnect between systems at HET are in flux and
remain unknown for the purposes of this paper. The ping and pong applications used in this test are shown

Table 2. Average round trip times for 100k messages.

From To mps

A A 2140.87

B B 1567.48

C D 939.72

D E 1741.51

below, and provide minimal examples of the interfaces detailed in Sec. 3.

ping.cpp

#include <assert.h>

#include "messaging .h"

int main ( int argc , char ** argv )

{

assert( argc == 3 );

Sender s( argv [1], "ping " );

for( int i = 0; i < atoi ( argv [2] ); ++i )

{

Message * pong = s.send ( "ping " );

if( i == 0 )

std:: cout << "response_wire_time , response_receive_time " << std :: endl ;

std :: cout << pong ->get_wire_time (). as_string ()

<< ","

<< pong ->get_receive_time (). as_string ()

<< std :: endl ;

delete pong ;

}

return 0;

}
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pong.cpp

#include <assert.h>

#include <stdlib.h>

#include "messaging .h"

class pingHandler : public MessageHandler

{

public:

pingHandler ( int limit ) : limit_(limit), count_ (0) {}

private:

virtual void process ( Message* m )

{

if( count_ == 0 )

std:: cout << "command_wire_time , command_recv_time " << std:: endl ;

std :: cout << m->get_wire_time (). as_string ()

<< ","

<< m->get_receive_time (). as_string ()

<< std :: endl ;

delete m;

count_ ++;

if( count_ == limit_ )

{

sleep( 1 );

exit ( 0 );

}

}

int limit_;

int count_;

};

int main ( int argc , char ** argv )

{

assert( argc == 3 );

// argv [1] == URL , argv [2] == message count

Receiver r( argv [1], "pong " );

r. registerHandler ( "ping ", new pingHandler ( atoi ( argv [2] ) ) );

r.start ();

return 0;

}
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